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Abstract

Holographic data storage is a promising data storage technology because of its potential for high

data storage density (more than 1 Tbyte/in2), high data rate (more than 1 Gb/s) and short access

time (less than lgs). In contrast to conventional data storage systems, holographic data storage

systems use a parallel two-dimensional or page-like format in recording and retrieval.

In this project, we have investigated different methods of 2D channel identification,

equalization and detection for holographic data storage channel. To evaluate different 2D

equalization and detection methods, we needed the channel model. Therefore, we first developed

a physical channel model based on the physical impairments. We evaluated the performance of

this physical channel model using 60 real recorded and retrieved pages, provided by Inphase

Technologies. The advantage of the physical channel model is that it allows us to control the

impairment amounts and study their impact. We also investigated linear and nonlinear channel

identification methods and compared their performance. We investigated the minimum mean

square error (MMSE) equalizer, the zero forcing equalizer (ZFE), the adaptive decision feedback

equalizer (ADFE) and the adaptive Volterra equalizer (AVE). For detection methods, 

investigated fixed threshold, adaptive threshold, log likelihood ratio (LLR) and iterative detectors.

To evaluate the performance of these equalization and detection techniques real pages as well as

simulated pages (using physical channel model) have been used. The results show that MMSE

equalizer outperforms the other equalizer for low signal to noise ratio (SNR) real data as well 

simulated data. Iterative detector works well for higher SNR simulated page but adaptive

threshold detectors performs better for real data.
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Chapter 1

Introduction

In this chapter, first the basic principles and a brief history of holographic data storage system

(HDS) are provided. Then, we describe the main components of HDS. Finally, we explain the

motivation for investigating 2D signal processing for HDS.

1.1 What is holography?

The physical principles of holographyinvolve the recording of the interference pattern,

formed by interfering two coherent wavefronts (loosely called "beams") of light, and the

subsequent illumination of that recorded pattern by one of the beams to recreate the other beam.

The intersection of two wavefronts creates an interference pattern of bright and dark regions.

The interference pattern is stored as chemical and/or physical changes (e.g., absorption, refractive

index, thickness) in a photosensitive medium. The hologram is the image of the interference

pattern stored within the medium. Light from one wavefront shining on the hologram reconstructs

the data pattern (Fig. 1-1).

Medium

Signal beam

Reference beam

Constructed
Hologram Signal beam

Reference beam

(a) (b) (c)

Figurel-1, (a) Recording, (b) Hologram, (c) Reading

In the specific case of holographic data storage, one wavefront is a signal wavefront

containing a two dimensional pattern (or page) of ls and Os representing digital data. The other



www.manaraa.com

wavefront is a reference used to form the interference pattern and construct the signal wavefront.

Both amplitude and phase information are stored and retrieved in HDS.

1.2 Brief history of holographic data storage system [1]

In 1891 Lippman demonstrated the first method of color photography by interfering a beam

of light with its own reflection. The process was termed "interference heliography". While some

amazing color photographs were made on black and white films, very little was done with this

process until 1960s, when it was applied to white light holography using counter-propagating

laser beams. Data storage based on Lippman process was explored briefly at IBM.

In 1948 Dennis Gabor made the insightful observation that the phase information in a wave-

front could be recorded by interfering it with a coherent background. He showed that the original

wavefront could be reproduced exactly by illuminating the recording with only the coherent

background. The process was termed "holography".

It was not until the early 1960s with the invention of the laser that the technology became

practical for storing and retrieving images. The concepts of holographic data storage (HI)S) were

established by Van Heerden. In his seminar paper in 1963 on the theory of optical information

storage in solid materials, Van Heerden postulated that the recording of interference pattern in a

three-dimensional medium could be used as a means of storing and retrieving information. The

arrival of the laser provided the necessary coherent source. Although Van Heerden discussed the

multiplexing of numerous holograms in a common volume by changing either the angle of the

reference beam or the wavelength of both beams, it was not until 1973 that angular multiplexing

was actually applied to the storage of information.

Although data storage using volume holography was proposed in 1970’s, it has failed to

become a commercial product mainly because of lack of suitable recording materials. Recently

with significant improvement in supporting devices, optical systems and media materials and also

using advanced signal processing, commercial HI)S systems appear to be on the horizon.
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1.3 Main components of HDS

The most. important components in a HDS system are the spatial light modulator (SLM),

optical lenses, the medium and the detector. The schematic of a HDS system is shown in Figl-2.

Signal
beam

Spatial Light
Modulator

(SLIVI)

Fourier Detector
Lens ~.~

Reference
beam

Figure1-2, Main component of HDS

Light from single laser beam is split into two beams, the signal beam (which carries the data)

and the reference beam. During recording, a page of digital data (l’s and O’s) is represented 

the SLM as a pattern of bright and dark pixels. The exact number of data bits,is determined by the

pixel count of the SLM. Common size of SLM is 1024X1024 pixels. The signal beam passes

through the SLM and becomes modulated in two dimensions by the pattern on the SLM. The

SLM wave-front travels trough optical lenses and the interference of reference beam and the

Fourier transform of the signal beam is stored in the medium. In order to read the data, the

corresponding reference beam reconstructs the stored information. This wave-front passes

through optical lenses so reconstructed information is back in spatial domain, and then is

projected onto a detector array that reads the intensity of this wave-front.

The Fourier transform hologram is a useful configuration for holographic storage. In this

arrangement the most useful components of the frequency spectrum can be formed into a

relatively compact signal beam. This increases the information density and allows more effective
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use of the recording material. Another benefit is that Fourier transform holograms are less

sensitive to misalignment and to imperfections in the SLM.

By using multiplexing, several data pages can be stored in the same volume of medium.

Holograms read out by applying a reference beam identical to that used during recording. Most

important multiplexing method are angular multiplexing where the angle of reference beam

changes, wavelength multiplexing where the wavelength of reference beam changes and phase

multiplexing where the of reference beam changes phase. With multiplexing methods, storing of

1000 data pages in the same volume of medium is possible.

1.4 Motivation for 2D signal processing for HDS

Due to the rapid growth of intemet and digital communications, the need for storing huge

amounts of data with fast access capabilities has increased dramatically. Conventional (i.e.,

magnetic and optical) data storage technologies are expected to reach their physical and

engineering limits in the near future, and as a result investigating new, more unconventional data

storage systems is necessary. Holographic data storage is a promising data storage technology

because of its potential for high data storage density, high data rate and short access time. In

contrast to conventional data storage systems, holographic data storage systems use a parallel

two-dimensional or page-like format in recording and retrieval, leading to high data rates and

short access times. The ability to multiplex several data pages into a given volume of the medium

leads to potentially high volumetric storage densities.

Similar to conventional data storage systems, holographic data storage systems suffer from

inter-symbol interference (ISI) and noise. Consequently advanced signal processing techniques

need to be used to recover reliable data. Because of the two-dimensional (2D) nature 

holographic data storage, 2D signal processing techniques have to be considered. 2D signal

processing techniques are not limited to page-oriented data storage systems. With the increase in

4
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track density of conventional data storage systems (e.g., hard disk drives), the interference from

adjacent tracks will increase leading to 2D ISI.

2D signal processing has an important role to recover reliable data for HDS. Utilizing

advanced 2D signal processing techniques along with suitable supporting devices, optical systems

and media materials are necessary to have a commercial HDS in nearfuture.

1.5 ,Organization of this report

This report consists of six chapters. In first chapter, holographic data storage is introduced.

The basic principles and brief history of HDS is described also. Chapter 2 consists of the

explanation of the physical channel model. Chapter 3 covers channel identification. Linear

minimum mean square error (LMMSE) estimation and nonlinear look-up-table are explained 

this chapter followed by the comparison of these methods. In Chapter 4, the minimum mean

square error (MMSE) equalizer, the zero forcing equalizer (ZFE), the adaptive decision feedback

equalizer (ADFE) and the adaptive Volterra equalizer (AVE) are discussed. Their performances

based on bit error rate (BER) are compared using real data and simulated data. Issues such 

practicality and complexity are also considered in this chapter. Chapter 5 discusses the detection

methods. Fixed threshold, adaptive threshold, log likelihood ratio (LLR) and iterative detection

methods are analyzed. The BER results of these methods for raw input data are shown. The

summary of this project is described in chapter 6.
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Chapter 2

Physical Channel Model

In this chapter we describe a holographic data storage (HDS) physical channel model. This

model is based on physical channel impairments and gives us a tunable simulator. Tunable

simulator is important in investigating signal processing options. We discuss the channel

impairments that we have considered in the channel model. Physical channel model is developed

using MATLAB. A binary data page and channel parameters are the inputs and the detector

(camera) output intensity page is the output of this simulator. All the parameters are tunable with

the default values given by Inphase Technologies. The evaluation of this simulator is given in the

next chapter,

2.1 Channel impairments and physical channel model

The channel impairments for main components (light source, SLM, storage medium and

detector) of HDS are listed as following.

¯ Light source: Non-fiat input illumination

¯ SLM: Finite contrast ratio, Non-full fill factor, Non-uniformity, Electronic noise and

Phase mask

¯ Storage medium: Frequency plane aperture and Optical noise

¯ Detector (Camera): Dark noise, Electronic noise, Non-full fill factor and Quantization

We model the impairments based on their physical functions and related mathematical

equations. The details of these impairments and their models in the simulator are explained in this

part. For physical channel model, a MATLAB-based simulator has been designed and

implemented. This simulator starts with a page of binary (i.e., ones and zeros) data, applies all the

above channel impairment and determines the camera output intensity. All the parameters are

6
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tunable. We have defined the default values for each of these parameters based on the information

given by Inphase Technologies.

2.2 Light source

The input illumination is not flat. The coherent light source has a Gaussian wave-front. By

using the central portion of the Gaussian, one can achieve a flatter illumination, but at the expense

of light loss. Thus, there is a tradeoff between the light loss and input wave-front flatness. This

non-flatness impairment is modeled as a two-dimensional centered Gaussian wave front. The

width of this Gaussian wave front is determined based on the decrease of the intensity of the input

illumination from the center to the comers of the SLM (Fig. 2-1). In the default model, 10%

decrease in intensity, from the center to the comers is assumed.

1
.95

0.8

0.6

OA

0.2

0

Figure 2-1, Gaussian light wave front; Light amplitude as a
function of position; N=number of columns in the data page

2.3 Spatial Light Modulator (SLM)

Following SLM impairments are included in the channel model.

2.3.1 Amplitude contrast ratio (ACR)

The input of SLM is a page of binary data, but in a real SLM, pixels cannot achieve zero

intensity. Instead, the zero bits will have a non-zero amplitude leading to a finite Amplitude

Contrast Ratio (ACR) e. ACR is defined as the ratio of the average amplitude of ’one’ bits to the

average amplitude of ’zero’ bits. Thus, in the computer model, all the zeros in SLM plane are

replaced by 1/e (Fig. 2-2). e = 10 is the default choice.

7
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SLM

din,n( 1, lie)
A

Laser ~
Wavelength Binary data

Figure 2-2. Amplitude Contrast ratio

2.3.2 Non-uniformity

The SLM non-uniformity is a measure of the amount of variation in pixel intensities across the

SLM. In this simulator, non-uniformity is modeled by a random number, drawn from a uniform

distribution. The non-uniformity percentage is an input parameter of the model and controls the

range of the uniform distribution. Non-uniformity is a tunable parameter and we use the default

value of 1%.

2.3.3Electronic noise

Electronic noise is another source of impairment in the SLM. The SLM electronic noise is

modeled as additive white Gaussian noise (AWGN). The mean and variance of AWGN are

tunable and this noise is added to the zero-noise SLM values.

2.3.4 Phase mask

The transmittance function of a two dimensional SLM can be described as follows.

N/2 M/2

I(x,Y)=E E
n=-NI2 m=-MI2

f(m,n)RectIx~A~ect(Y~A)
(2-1)

Where M is the number of columns in the data page, N is the number of rows in the data page,

A is the pixel pitch in the SLM and c~is the SLM linear fill-factor. The 2D arrayf(m,n) contains

the binary data page except that 0 is replaced by (l/e).
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When the transmittance function f(x,y) of the SLM is illuminated by a plane wave-front, the

field in the back focal plane of the lens is the 2D Fourier transform of this function [1]. This

Fourier transform has a large dc peak in the recording plane because the input data has zeros and

ones and thus has a nonzero DC value. This large DC peak makes the dynamic range in the

frequency plane very large leading to potential saturation nonlinearities in the recording medium.

One way for making intensity more uniform in the frequency plane is to use a phase mask in the

SLM plane. In this method, a mask with randomly varying phase elements is used to multiply the

SLM pixel values. The transmittance function, in the presence of a phase mask, is given as

follows.

NI2 MI2

f(x,y)= ~., ~ f(m,n)e~O(m’~Rect(x-mA’]RectlY-nA~
n=-N/2m=-MI2 ~. --~ ’) k. aA J

(2-2)

-~ < 0(m,n) < :rt"

where ~rn,n) is the phase element at the (m,n) pixel in the SLM page. Multiplication by a phase

mask results in the convolution of the original spectrum by the Fourier transform (FT) of the

phase mask. Convolution tends to broaden the peaks, making the dynamic range smaller and thus

more acceptable. The phase steps can have values of 2rdM where M is an integer. Phase mask

steps are drawn from a uniform random distribution with M levels in this simulator. The number

of phase levels or steps is tunable.

2.3.5 Fill factor

The active portion of an SLM pixel is typically smaller than the entire pixel. The ratio of the

active area to total pixel area is called fill factor. In the presence of non-full fill factors, we can

rewrite the transmittance function of the SLM as follows.

f(x,y):(~ ~f(m,n)6(x-mA, y-nA))*(Rectl-~AIRect(---~l)(2-3)
k.m=-MI2 n=-NI2
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where * denotes 2D convolution, ~is the linear fill factor and ~.) is a delta function. The field in

the back focal plane of the lens is the Fourier transform (FT) of the transmittance function (in

equation 2-3) and is given as follows.

F(u,v)=(FT{f(m,n)}*~-’~ z 6(u-~’v-~;Isinc(uc~A)sinc(vc~X) (2-4)

where Sinc(x) = Sin(~c)/(~x) and where u and v denote the spatial frequencies corresponding 

and y. In the fre_quency domain, as we can see from equation 2-4, fill factor c~ is a factor in the

sinc function envelope. We simulate the SLM fill factor effect in the frequency domain. The SLM

fill factor parameter (~) is tunable and its default value is 0.95.

2.4 Storage media

Storage media impairments are as follows.

2.4.1 Frequency Plane Aperture

An aperture is used in frequency plane and acts as a spatial low-pass filter. By using an

aperture in the recording plane, we reduce the amount of media used for storage of that hologram

and thus increase the storage density. However, smaller apertures result in more inter-symbol

interference (ISI).

Fourier Lens

Medium x’x’~

Aperture

l~eference/

Figure 2-3, Frequency Plane Aperture

10
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An aperture of size D=AfIJA where A is the SLM pixel pitch, A is wavelength andfL is the focal

length, is known as the Nyquist aperture (Fig. 2-3).

In the real physical system, the aperture width can be bigger than the Nyquist width. To model

apertures bigger than Nyquist width, the output of the SLM is up-sampled by factor of two in

each direction. This allows us to simulate aperture widths up to twice the Nyquist width. In this

simulator, the aperture modeled is a square aperture and is centered at the origin of the frequency

plane. The aperture width is a tunable parameter and its default value is 1.21 times the Nyquist

area.

2.4.2 Optical noise

During reconstruction, the light amplitude field in the back focal plane of the lens is the

Fourier transform of the page recorded in storage media. So the recovered page from the media,

after the inverse FT due to the second lens, is back in the spatial domain. To reflect the various

noises (e.g., light scatter, lens reflections, stray light, etc.), that affect the light amplitude, we add

optical noise. Optical noise is modeled as circularly symmetric complex Gaussian noise as below.no = ni + jnq

(2-5)

AWGN is added to the real and imaginary parts of the light amplitude just before the camera

plane (Fig. 2-3).

2.5 Camera

We consider the following impairments for the camera.

2.5.1 Electronic noise

Camera electronic noise is modeled as AWGN. This noise is added to the amplitude of camera

value. The variance and mean are tunable.

2.5.2 Dark noise

Another source of noise in the camera is the dark noise. This is the signal produced by the

pixel in the absence of any incident light and is due to thermally generated electrons rather than

11
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optically generated electrons. In our simulator, dark noise is modeled by a uniform distribution.

The dark noise intensity percentage is a tunable parameter.

2.5.3 Camera fill factor

Just like SLM fill factor, the camera fill factor is the ratio of active area to the total pixel area.

We simulate the effect of camera fill factor in the Fourier transform of the amplitude. After

adding optical noise to the light wave front impinging the camera, Fourier transform is applied to

the noisy wave front to go to frequency domain. Sinc function equations are same as in the case

of SLM fill factors (equations. 2-1, 2-3 and 2-4). An inverse FT is applied to determine the

effective light amplitude wave front at the camera. After applying fill factor in frequency domain

and coming back to spatial domain, intensity incident on camera is determined. Any fill factor

value is possible in this method, but we need to perform two Fourier transforms. Areal Camera

fill-factor is a tunable parameter and the default value used is 0.40.

We can apply camera fill factor directly in camera plane. For this method first, we need to

over sample the pre-camera page. Then set a select number of sub-pixels in each pixel to zero to

simulate different detector fill factors. The ratio of the number of non-zero intensity sub-pixels to

all of the sub-pixels is equal to camera fill factor. Finally calculate intensity over each pixel. This

method has two disadvantages. First, over sampling increases the computational complexity.

Second, we can apply limited value of fill factor by finite over sampling. As a result we didn’t use

this method.

2.5.4 Quantization

Another type of camera impairment is the quantization error. In this simulation, we consider

non-uniform quantization with fixed upper and lower limits of 0 and 1, respectively. Based on

the real data provided by Inphase Technologies, it is evident that the output levels are not

quantized uniformly; they are quantized based on a seemingly consistent non-uniform

quantizer function. For instance, we have determined from observation that the input-

12
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output curve of the quantizer for a set of 64 consecutive output levels out of the 1024

levels is as in Figure 2-4.

Quantization level is a tunable parameter as a power of two (number of bits).

20

Oo 0.01 0.02 0.03 0,04 0.06 0.06 0,07

Normalized inputs

Figure2-4, Input-output curve for the quantizer for one set of 64 output levels

2.6 Overall simulation

Overall simulation can be summarized as follows:

SLM

¯ Introduce contrast ratio
¯ Add non-uniformity
¯ Add electrical noise
¯ Multiply by Gaussian

source light
¯ Multiply by phase-mask

Lenses

¯ Over-sampling bytwo
¯ Two-dimensional FFT
¯ Apply SLM fill-factor
¯ Apply aperture
¯ Two-dimensional IFFT
¯ Add optical noise

Camera

¯ Add electronic noise
¯ Apply camera fill-factor
¯ Calculate intensity
¯ Add dark noise
¯ Non uniform Quantize

2.7 Summary

Tunable channel model has an important role in investigating signal processing options. As a

result, physical channel model with tunable parameters is developed. This simulator is

implemented based on mathematical equations of channel impairments.

13
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Chapter 3

Evaluation of Physical Channel Model and Channel

Identification

In this chapter we first evaluate the performance of the physical channel model using the

normalized root mean squared error (NRMSE) and the signal to noise ratio (SNR) metrics. 

used 60 input pages and corresponding 60 recovered output pages provided by Inphase

Technologies. For NRMSE metric calculations, we compare the simulated output page with real

recovered output page pixel by pixel and for SNR metric, we compare the histogram of simulated

output pages with histograms of real output pages.

Then we investigate the 2D linear and 2D non-linear channel identification methods using

these 60 input pages and corresponding output pages as training pages. We used linear minimum

mean square estimation as the linear method and look-up-table as the nonlinear method. We also

compare their performance with that of physical channel model.

3.1 Evaluation of physical channel model

To evaluate the validity of the physical channel model we compare the outputs of the model

with the real output pages using the same input pages. We used 60 real output pages and

corresponding input pages provided by Inphase Technologies. The size of data pages is

1024X1280 with binary input data. The parameters used in simulator for these result are:

¯ Amplitude contrast ratio = 10

¯ Nonuniformity = 1%

¯ Light drop in the edges = 10%

¯ Number of Phase mask levels = 16

¯ Areal SLM fill factor = 95%

14
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¯ Areal aperture size = 1.21xNyquist aperture

¯ Areal camera fill factor = 40%

¯ Optical noise: mean = 0, variance = 0.023

¯ Electronic noise: mean = 0.42, variance = le-5

¯ Dark noise: 1%

¯ Non-uniform quantizer ̄  10 bit with upper limit = 1024 and lower limit =0

3.1.1 Histogram comparison

The output page histograms of the zeros and ones give an idea of how well they are separated.

In Figures 3-1 the histograms of a real page and simulated page generated with the same input

pattern are shown and appear to be quite similar. Default parameters are used for simulator.

x 104
4.fi

200 400 600 800 1000 1200

(104
4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
200 400 600 800 1000 1200

Figure 3-1, Histograms of (a) Recovered and (b) Simulated pages

The separation between the histograms can be quantitatively represented using the SNR metric

defined below
SNRpae,e = 201ogl0(a/~ erfc-l(2 BERpqa,

(3-1)

BERt, age is the average of theoretical Bit Error Rates (BER) over several tiles (sub-blocks) of the

input page. BER of each tile is obtained using equation 3-2.

Q is given by:

15
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Q - (3-3)
O"1 + O"o

Where/z0 and/zl are the means of intensities of camera pixels corresponding to zeros and ones

respectively and o-0 and O" 1 are standard deviation of intensities of camera pixels corresponding to

zeros and ones, respectively, in the input page.

Typical SNR obtained using tiles of size 32x32 pixels in the real page was about 2.8dB and in

simulated pages of the same tile size about 3.3dB as can be seen in Fig. 3-2. InPhase

Technologies has been able decode without errors encoded pages with SNR values around 2.8dB.

3

3:2 ~- [~ Simulated pages

31~t

I ---x- Real pages

2.4 i0 20 30 40 50
Page number

Figure 3-2, SNR of Real and simulated pages

60

3.1.2 Page comparison

The level of closeness between the pixels in the real and simulated pages is quantified by a

metric called the Normalized Root Mean Square Error (NRMSE), defined as follows.

(3-4)

16
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Where R is the recovered page and S is the simulated page and m and n are the rows and columns

of the pixels. The a that minimizes the numerator of equation 3-4 is given below in equation 3-5.

~-’~R(m,n)S(m,n)
m,n (3-5)

~S(m,n)z
m,n

The NRMSE between the simulated and real pages ranges between 29-32%. A plot of this is

shown in Figure 3-3 (a). Each point represents the NRMSE of one page. The corresponding

values for the NRMSE values are plotted in Figure 3-3 (b). From the a values we infer that they

are close to 1 for all the pages, which means that the simulated pages do not require an additional

scaling factor and the a values do not vary much for the different pages.

(a)

(b)

0.33

O.32

0.31

0.3

0.29

0.28
O

1.2

~:. -;,*-~:~.~--

I I I I I

10 20 30 40 58
Page number

, , ’

0 10 20 30 40 50 60
Page number

Figure 3-3, (a) NRMSE between recovered and simulated pages,
(b) Corresponding a values.

We see that some portions of simulated pages are more accurately simulated than others. The

white regions in Figure 3-4 have NRMSE less than 28% and there are about 64% such blocks.

17
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1

15

20

2~

3O

5 10 15 20 26 30 35 40

Figure 3-4, Black blocks (sized 32x32 pixels) are regions in a page having
NRMSE between real and simulated pages < 28 %

3.2 Channel identification

In this section, we report the results of our investigation of Linear Minimum Mean Square

Error estimation and nonlinear look-up-table methods. The 60 input binary pages and

corresponding real pages have been used as training pages. The performances of these methods

are compared using the normalized root mean squared error (NRMSE) metric.

3.2.1 Linear MMSE channel identification

As we explained earlier, for holographic data storage channel there are many sources of

impairment and noise that reduce the fidelity of output data. To obtain a simple model, it is useful

to consider two main factors. The first factor is concerned with the imaging properties of the

optical system. HDS optical system has a low-pass response that results in 2D blurring. That

optical blur causes 2D ISI in the recovered pages. Another important factor is the noise. HDS

systems consist of many supporting devices and systems and each of them contributes its own

noise. To model the channel we consider a Gaussian noise model as the overall noise of the HDS.

So we can consider HDS as a 2D ISI channel whose output is corrupted by additive white

Gaussian noise (AWGN) as shown in Fig. 3-5. The mathematical expression of this channel is 

in equation 3-6.

18
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a(x,y) c(x,y)

Figure 3-5, Schematic of linear AWGN channel

L L

c(x,y): ~_, ~ h(p,q)a(x-p,y-q)+K +n(x,y)
p=-L q=-L

(3-6)

where c(x,y) is the simulated output, a(x,y) is the input data page, L is the number of pixel in each

direction that ISI extends and n(x,y) is the Gaussian noise. Constant K is used to model the effect

of nonzero means of input and output pages. To calculate the coefficients of h(x,y) we have used

the Linear Minimum Mean Square Error (LMMSE) estimation method given by the equation 3-7.

CAA h = CAC (3-7)

Where CAA is the input autocorrelation and Cac is the input-output cross correlation. CAA and Cac

are computed using real recovered output page and corresponding input page.

We have considered h(x,y) as a 3x3 kernel. In another word the ISI is truncated just to one

pixel in each direction (L=I). Because of the non-stationary nature of output pages (i.e, optical

properties are better along the optical axis than away from it), we determine channel model over

each 64x64 block of a page. In Fig. 3-6 the channel model parameters of corner block and middle

block of page one is shown. The channel model parameters for all pages are very close to those of

page one. We can see from Figure 3-6 that the ISI for corner block is more than that of the center

block, but in general the amount of ISI is not much.

The ISI can be quantitatively represented by equation 3-8.

ISI : ~ h(i’j )2-h(2’2)2
~-’~h(i ,j)2
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(a) (b)

Figure 3-6, Channel model of 64x64 block (a) corner block (b) center block

Fig. 3-7 (a) shows the ISI for all the 64x64 blocks of page one and Fig. 3-7 (b) shows the ISI 

comer blocks and middle blocks of all 60 pages.
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Figure 3-7, ISI of (a) all 64x64 blocks of page one, (b) center and middle blocks ISI of 60 pages

With this linear channel model, we can estimate the noise also. Noise is the difference between

the channel model output and real output. The histogram of noise for page one is shown in Fig. 3-

8. As we can see the distribution of error is not exactly Gaussian but close to it. If modeled as
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Gaussian, the variance of error is 0.0033 and the mean is almost zero. The root mean square error

between channel model output and real output for page one is 0.177.

104
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8

4

2

0 ---0,8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure 3-8, Histogram of identification error for page 1

3.2.2 Non-linear Look-up-table channel identification

Look-up-table method is a non-linear channel model. To build the table we consider blocks of

3x3 in input pages. These 3x3 blocks contain all the possible combinations of ones and zero

therefore the look-up-table has 512 entries as shown in Fig. 3-9. For each entry of the table, a

number representing the output value is needed. Output values are the average of center points of

the 3x3 block in the real output pages for the corresponding input blocks. For example for the

first entry of the table ( all zero 3x3 block) we look for all-zero 3x3 blocks in the input page and

find the center values of corresponding 3x3 blocks in output pages and find their average. This

value is the output of the first entry of table (Co in Fig. 3-9). An output page can be simulated 

using the table. Because of the non-stationarity of real output pages, each 64x64 block of a page

has its own table. Although, this method is computationally demanding, it captures nonlinearities

and may provide improved results.
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Figure 3-9, Look-up-tables. Each 3x3 blocks of ones and zero is an entry of look-up-table and each C
is corresponding output

3.3 Channel estimators result

To compare the performance of the LMMSE channel identification and the nonlinear look-up-

table method, the NRMSE metric in equation 3-4 is used. The result is shown in Figure 3-10. In

this figure the NRMSE of physical channel model is also plotted. The performance of look-up-

table is better than those of the LMMSE identification and the physical channel model.
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Figure 3-10, comparison of NRMSE for LMMSE channel
identification, look-up-table and physical channel model
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3.4 Summary

The LMMSE and the look-up-table channel models both outperform the physical channel

model. But physical channel model has some advantages over the LMMSE and the look-up-table

models. One advantage of physical channel model is its capability of tuning the parameters of the

simulator. Therefore we can investigate the channel by changing its physical parameters. The

nonlinearity of the channel is included in this model too. Even though the NRMSE of physical

channel model is more than those of other models, for some parts of a page the NRMSE is very

low. While the performance of look-up-table is the best, it is not computationally practical.

Based on these channel models, we can infer that the holographic data storage channel is a low

SNR channel and that the ISI in central part of a page is low but is more in the outer regions.
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Chapter 4

2D Equalization for Holographic Data Storage Channel

Holographic data storage (HDS) channel suffers from 2D Inter-Symbol Interference (ISI) 

a standard approach to deal with ISI is the use of equalization. In this chapter, we investigate

linear minimum mean squared error (MMSE) and,zero-forcing (ZF) equalization methods 

nonlinear adaptive Volterra and adaptive decision feedback (DF) equalization methods while

considering 2D nature of HDS. The performance and complexity of these equalizers are

compared using 60 real data pages supplied by InPhase Technologies as well as simulated data.

We have used the physical channel model for generating simulated data.

In Fig. 4.1 the schematic of a system with equalizer is shown where Y represents the output

page (equalizer input) and R is the equalized page (equalizer output). A(rn, n) denotes the digital

(usually binary) data being stored. The output page can be modeled (assuming linearity) as the 

convolution of the A(m,n) with the impulse response of the channel, except for the additive noise.

Channel y Equalizer. R Detector

N

Figure 4.1, A schematic of equalization

Since the channel impulse response is usually not a delta function, the channel suffers from ISI

and simple detection schemes will result in significant errors if the ISI is left untreated.

4.1 MMSE Equalizer

MMSE equalizer is defined by a (2L+I)x(2L+I)+I array of coefficients w. Its operation is as 

equation 4-1.
L L

R(m,n)= ~_, E w(p,q).y(m- p,n-q)+ o (4-1)
p=-L q=-L
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The w0 coefficient allows us to model the nonzero mean of recovered data pages (Y). Coefficients

w are obtained by

Crr w=CrA (4-2)

where Cry is the output autocorrelation and CrA is the input-output cross correlationu The w

coefficients are selected to minimize the mean squared error between the equalizer output and a

target output. The target output here is the input page. Figure 4.2 shows the histograms before and

after MMSE equalization. It is clear that the histograms have less overlap after equalization.
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Figure 4-2, Histograms of ones and zeros before (a) and after (b) minimum 
squared error (MMSE) equalization

4.2 Zero forcing equalizer (ZFE)

A straightforward equalizer is the zero-forcing equalizer (ZFE), which essentially inverts the

transfer function H(z) of the channel, so that the overall transfer function H(z)W(z) is 1 for all

frequencies, thus having no ISI. However, H(z) is typically a low-pass type of channel causing

W(z) to be large at high frequencies. So the disadvantage of this equalizer is that it amplifies high

frequency noise causing the BER to increase. The ZF equalizer is obtained from equations 4-3

and 4-4.

R(n, m) - R :w*(Y (n, m) -r)

FFT(R) = FFT(Y).FFT(w) + 

(4-3)

(4-4)
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4.3 Adaptive decision feedback equalizer

The basic idea of decision feedback equalization (DFE) is to pass the read-back signal through

a linear equalizer called the forward equalizer, so that the non-casual or the precursor ISI is made

zero. Previous decisions at the output of the threshold detector are fed back through the backward

equalizer, which eliminates the post-cursor or casual ISI left after the forward equalizer. A

schematic diagram of the adaptive DFE is shown in Figure 4-3.

Forward
channel Rk eoualiz~r Qk[ detector

Ak_~ H(Z) ~?-~ /~ ~

o m ~ m / Feedback
C(z) = ~_~ CruZ- D(Z) =,~ dmZ- equalizer

m=-(N-1) m=l

Figure 4-3, A schematic of adaptive DFE

Since the forward equalizers are designed to minimize the noise variance and they allow post-

cursor ISI, DIrE has less noise enhancement compared to linear equalizers that try to cancel all

ISI. However, the big disadvantage of DFE is the error propagation due to potentially incorrect

decisions made by threshold detector, particularly in low SNR. This error propagation will be a

big problem in low SNR channels.

Equalizer weights are updated adaptively according to the steepest descent algorithm using

following equations (equations 4-5 to 4-10) when considering the2D nature of the system.

Ek =Qk -~ (4-5)
0 M

Qk : Z Ciek-i - Z di~k-i (4-6)
/=-(N-I) i=1

V T = [C_(N-l) "’" Co dl .." dm ] (4-7)

W? = [RK+(N_I) ...Rg Ak_1 ...A k_M ]
(4-8)

E~ = ~ -V[W~
(4-9)
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where E~ is the error signal between input and output of the threshold detector (Fig. 4-3). ~ 

detected data (the assumption is ~ =A~) and Q~ is reduced ISI signal. E~ can be written 

equation 4-9 too. V is an array containing coefficients of forward equalizer and feedback

equalizer (equation 4-7). W~ is an array containing the inputs of forward equalizer and feedback

equalizer with assumption that A~ =~ (equation 4-8). k is iteration number and fl is updating step.

Equation 4-10 is the updating equation for the equalizer’s coefficients

4.4 Adaptive Volterra Equalizer

The quadratic relationship between input data and intensity output of camera suggests the use

of a nonlinear equalizer modeled as a second order discrete time Volterra equation. The 2D

equalizer output is obtained using equation 4-11.

N N (4-11)

R(m,n)=Wo+ Z Z Wl(Pl’Pz)’Y(m-pl’n-Pz)+
pl=-N p:z=-N

M M M M

Z Z Z Z w2(P"Pz’P3’P4)’Y(m-pl’n-P2)’Y(m-p3’n-P4)
pl=-M p~=-M p3=-M p4=-M

where y(m,n) represents the recovered page (equalizer input), ~ is the equalized page (equalizer

output) and w0, Wl, w2 are equalizer constants and kernels. The wl is a 2D kernel of size (2N+1)

by (2N+l) whereas w2 is a 4D kernel of size (2M+l) along each axis. The weights of equalizer 

adapted according to the least mean square error (LMS) algorithm.

(4-12)
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where k is iteration number, c~, fl and 7 are updating steps, Y is a vector containing y(m,n), isa

vector containing the products of y(m,n) (U:{ y(m-pl, n-p2) X y(m-p3,,n-p4 and e~ istheerror

signal.

4.5 Results with real data and simulated data

We have applied the above equalizers to 60 real un-coded data pages of size 1024x1280.

Because of the non-stationary nature of the underlying ISI, we process blocks of size 64X64. For

MMSE, ZF and adaptive DF equalizers, a 3x3 kernel with a constant w0 is considered. A bigger

kernel did not result in a noticeable improvement. For adaptive Volterra equalizer we use a 3x3

kernel for wl and a 3x3x3x3 kernel for w2 and a constant w0. The resulting BERs are shown in

Fig. 4-4. The SNR of these recovered pages is very low (around 3 db) so the BER is very high.

These BERs are for un-coded data. The BER improvement for MMSE equalizer is about 20%.

The performance of ZF algorithm is a little worse than that of the MMSE. The performance of

adaptive Volterra equalizer is very close to that of the MMSE. Adaptive DF equalizer

performance is worse than that of the MMSE because of its error propagation.

:

__~__J____ J
I 0 20 30 40 ~0

page#

Figure 4-4, Equalizers for real data

10":

--’~"-ZFequali~~:..~: ......

--O-- adaptive DF equalization
10 2 4 6 8 10 12

SNR

Figure 4 -5, Equalizers for real data

To investigate the performance of these equalizers for higher SNR data pages, we used the

physical channel model. In our investigations, MMSE equalizer shows better performance
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compared to others for higher SNR (Fig.4-5). The SNR calculated based on equation 4-13 where

E, is normalized energy of signal and o~ is the variance of noise.

SNR = 20 log ~
(4-13)

4.6 Practical implementation of MMSE equalizer

Because MMSE equalizer shows better performance, we focus on MMSE equalizer for

practical implementation. In experiments described so far, we determine the MMSE equalizer

coefficients by using all the data of input and output pages. This method is computationally

demanding. Also in a real system we don’t know most of the input data on a page (except for

some fiducials) since it is user data and thus cannot hope to use all the bits on a page to determine

equalizer coefficient. We tried two more practical variations. The first is using one page as a

training page and applying the resulting equalizer to other pages. Second uses a training page to

obtain equalizer coefficients and updates them for each page based on a small part of the block

(e.g., a 8x8 sub-block where known bits are recorded). Both are promising as shown in Fig. 4-6.

0.0~8
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0.052 ............ ,’-- -
LLI
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page#

Figure 4-6, MMSE equalizer obtained from training
page and MMSE equalizer updating for each page
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4.7 Simplified implementation of MMSE equalizer

One method to compute the ZF equalizer coefficients is in frequency domain. In this method, to

have a good result, we need to use all the pixels of an input page and corresponding real output

page to calculate the coefficients of the ZF equalizer. We also need Fourier and inverse Fourier

transform. Adaptive Volterra equalizer, beside 2D kernel, has 4D kernel (w2) and these are

estimated iteratively. In DF equalizer, we have two 2D kernels that are obtained by iteration. So

the MMSE equalizer besides offering better BER performance, is less complex than the other

equalizers. We have also designed simplified MMSE equalizers by requiring symmetric and

separable kernels with fixed 8-point parameters. Symmetric kernel reduces the number of

multiplications. For symmetric channel we need to find 4 parameters instead of 9 parameters so

we can add the values that are multiplied by the same coefficient and carry out just one

multiplication. By using a separable equalizer kernel instead of 2D convolution, we can use two

1D convolutions and we need to find only 2 parameters. Schematic of MMSE equalizer,

symmetric and separable kernel are depicted in Fig. 4-7

Channel y . Equalize R Detector

1 1

R(n,m)= ~ ~.~ w(p,q).y(n- p,m-q)+ 
p=-I q=-I

w= a w= [b a b] a2

b b2 ab b2

Symmetric 3×3 equalizer Separable 3x3 equalizer

Figure 4-7, Schematic of MMSE equalizer with Symmetric and Separable kernel
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The BER results obtained from simplified MMSE equalizer based on symmetric and separable

equalizer kernel for real pages and simulated pages are shown in Fig. 4-8 and Fig. 4-9,

respectively.

Simulated data were generated by the physical channel model. For low SNR real data, we

observe around 15% improvement in BER. Based on these results, simplifying MMSE equalizer

does not degrade its performance much and we can reduce computational complexity.
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Figure 4-8, BERs for Symmetric and
separable MMSE equalizer for real data

Figure 4-9, BERs for Symmetric and
separable MMSE equalizer for simulated data

4.8 Summary

Among the various equalizers investigated (MMSE, ZF, adaptive DF and adaptive Volterra

equalizers), MMSE equalizer shows the best performance for real data (with low SNR) 

simulated data. The complexity of MMSE equalizer is less than those of other equalizers. Another

advantage of MMSE equalizer is that practical and simplified implementations of MMSE

equalizer appear to not degrade its performance too much.
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Chapter 5

Detection for Holographic Data Storage Channel

In this chapter, the performances of different detectors for holographic data storage channel

are compared. We have considered fixed threshold detector, adaptive threshold detector, log

likelihood ratio detector (LLR) and iterative detector. Fixed threshold detector is common

because of its simplicity. Its performance is good when the amount of noise and ISI is low.

Adaptive threshold is useful to assess the performance of other single-bit detectors. LLR detector

makes a decision in a sense of maximum likelihood. Maximum likelihood is an optimal detector

when the input symbols are equally likely. LLR detector is commonly used with decoder and soft

decision detector. Iterative detector takes into account the effects of neighboring bits and 2D ISI.

As a result it is a good candidate for HDS. These detectors are applied to real recovered and

simulated data as well.

Detector [

Figure 5-1, Schematic of a channel with detector

5.1 Threshold detector

For threshold detector, a fixed threshold is used. This fixed threshold is obtained by

calculating the mean of the output data. Fixed threshold detector is the worst detector for both

real data (with low SNR) and simulated data (with higher SNR). Simplicity is the advantage 

this detector.

5.2 Adaptive threshold

In adaptive threshold method, we search for a threshold that minimizes the empirical bit error

rate (BER). In this method first the mean of output values corresponding to zero input bits and the

32



www.manaraa.com

mean of output values corresponding to ones input bits are calculated. Then between these two

means, we search for a threshold that gives the lowest BER on the training data. Although the

performance of this detector is very good especially for low SNR real data, it is not a practical

approach because the input data has to be known in order to choose the best threshold. In

addition, an exhaustive search has to be done. This adaptive threshold detector provides a good

benchmark to assess the performance of other single-bit detectors.

5.3 Log Likelihood Ratio (LLR) detector

This detector is designed based on the LLR shown in equation 5-1.

(prob.(y(i,.j_)la(i,j)=l)l

(5-1)

LLR = log~ prob.(y (i , j )la(i

Where y(i~i) is the output value and a(ij) is the corresponding input bit. The decision should be

one if the likelihood, given the input bit = one, is more than the likelihood, given the input bit =

zero (equation 5-2).

a(i,j)=l if LLR>O

f(i,j) =0 if LLR <O

(5 -2)

The HDS channel suffers from different kinds of noises, but we lump all of them into a single

Gaussian noise model. To simplify the LLR calculation, we model the channel as an additive

white Gaussian noise (AWGN) channel. From the ones and zeros histograms of output pages

shown in Fig 5-2, we can see that the parameters of Gaussian distributions for output bits

corresponding to ones and zeros are different.

A practical way to obtain the parameters (means and variances) of Gaussian distributions for

ones and zeros is first using fixed threshold and estimating ones and zeros, and using the

estimated bits to obtain refined histograms of ones and zeros, and finally calculating the means

and variances of ones and zeros. By considering Gaussian distribution, LLR can be calculated

easily by equation 5-3.
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Figure 5-2, Histogram of real recovered data,Red lines for zeros and blue lines for ones

LLR log 2~f~expf 2o-~ J[

= 1 { (y-mo)~l/

 exp
(5-3)

where ml and m0 are the means of output bits corresponding to input ones and zeros and o’1 and

c~ are the standard deviation of output bits corresponding to input ones and zeros.

The performance of LLR detector for low SNR real data is better than that from the fixed

threshold detector, but worse than that of the adaptive threshold scheme. This may be because of

Gaussian assumption and using fixed threshold to obtain the parameters of these Ganssian

distributions. We can see from Fig. 5-2 that the tails of ones and zeros histograms are not

symmetric. Therefore using Gaussian model creates some error. As we said, fixed threshold does

not perform well and as a result using fixed threshold to estimate the Gaussian parameter

increases the error even more.

5.4 Iterative detection

The previous detectors make decision on each individual bit without taking into account the

effects of neighboring bits. But there is 2D ISI and for each bit there are 8 closest neighbors. One

way to consider the effects of neighboring bits is using 2D iterative detection motivated by

decision feedback techniques. In this detector we need to know the channel model. For simplicity
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we model the channel as a linear discrete 2D ISI channel whose output is corrupted by Gaussian

noise. The mathematical representation of the channel is given by equation 5-4.

L L

y(i,j)= ~ ~ h(p,q)a(i-p,J-q)+n(i,J)
(5-4)

p =-L q =-L

where L is the number of bits in each direction that the ISI extends, a(i,]) is the mean-subtracted

input data and y(i,j) is the mean-subtracted output data.

Channel model is calculated by linear minimum mean square error (LMMSE) estimation

method, using input pages and corresponding output pages. We obtain channel models for real

holographic data storage channel as well as for the simulator channel.

The first step of this 2D iterative detection algorithm is to apply the fixed threshold to the

output page, producing an input data estimate fi(i~]). At each pixel on the page a test is performed

based on these estimated data. To test the estimated data gt(i,j), first we set ~(ij)=l and the

neighbors as determined by estimation and convolve them with channel model to get the output

value fil(i~]). Then set gt(i,j)=O and the neighbors as estimated values and perform a convolution

with channel model and get fi0(id). Whichever gives the best match with the actual output data

y(i,j) is taken as the update estimate as shown in equation 5-5.

{~(i,j)=0 if ~o(i,j)-y(i,j) <lfil(i,j)-y(i,J)l (5-5)

~(i , j ) = otherwise

These new estimated values are used for next iteration. The iteration can stop when there is no

more change in ~(i~) or after a ixed number of iterations. The performance of this detector is 

good as that of the LLR for low SNR real data but it is the best for higher SNR simulated data.

5.5 Implementation and Results

The fixed threshold, Adaptive threshold, LLR and iterative detectors are applied to low SNR real

data and simulated data of different SNRs. The results for real data and simulated data are shown

in Fig. 523 and Fig. 5-4, respectively.
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The size of the data page is 1024x1280 and because of non-stationarity of the real output pages,

the detectors are designed and applied to 64x64 blocks of a page. So each block has its own BER

and the page BER is the average of these block-wise BERs over the page. The SNR of real

recovered data is around 3db. Simulator is the physical channel model that we have discussed

before. To implement the iterative detector we first obtain the 3x3 channel model.

0.12, , , , ’

0.~1 .-~i\~,v__~. --/~:,__~ ~_ ......~ ........
, ~ ...........~ ...........~ ...........~....~
/ ~ ~ ~ I ~d~h~.~o’ d

0.09~ ........... ; ........... ; ........... ;1 ~- ~terative #1

Q. ~:~x~;~4~,,------~ ........... ........... ........... .....
0.07-: .....

o.os . ..........._2..~L.. ,-~. .........{---: .....:-{ ...........~ ......)---

page#

Figure 5-3, BER of Detectors for recovered data

10"1

--O-- adaptive threshold
~ fixed threshold
~ iterative detection
-~ LLR detection

1040 2 4 6 8 10 12
SNR

Figure 5-4, BER of Detectors for simulated data

For low SNR real data, the BER performance of the LLR and iterative detector are close.

These detectors work better than the fixed threshold but worse than the adaptive threshold. The

result of the iterative detector shown is after first iteration. Increasing the number of iteration does

not appear to improve the performance of this detector because of error propagation at these high

BERs as shown in Fig 5-5. For more iteration, the BER fluctuates around the BER after the first

iteration (Fig 5-6).

For higher SNR (SNR>6 db) data, the iterative detector shows the best performance. Fixed

threshold detector is the worst detector and has the error floor around 102. LLR detector shows a

performance close to that of adaptive threshold detector. The result of iterative detector is after 2

iterations. Most of corrections happen during the first and second iteration. Figure 5-7 shows the

BER for simulated page at SNR=I 1 db.
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Figure 5-7, Iterative detector for simulated page with SNR= 11 db

5.6 Summary

Fixed threshold detector performs worse than other detectors, but it is a simple detector to

implement. For low SNR output page, LLR and iterative detector performances are close but for

higher SNR data, the iterative detector works better. Another advantage of iterative detector

algorithm is that it is parallel and can be applied to all the output data simultaneously. The

disadvantage of iterative detector is that the channel model needs to be known.
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Chapter 6

Conclusions and Future Work

6.1 Summary

In this project, our primary objective was to develop a channel model, equalization methods

and detection methods for HDS. In this regard we investigated different methods of channel

identification, equalization and detection techniques.

For channel modeling we investigated physical channel model, LMMSE channel estimation

and look-up-table methods. Physical channel model was developed using physical channel

impairment. We compared their performance based on NRMSE using 60 real recorded and

retrieved pages, provided by Inphase Technologies. Look-up-table performs better but it is

computationally complex and time demanding. The performance of physical channel model is

worse than those of others. Its advantage is controlling the impairment amounts that can be

utilized to study their impact over the channel.

We investigated the MMSE equalizer, the ZFE, the adaptive decision feedback equalizer and

the adaptive Volterra equalizer. MMSE equalizer shows the best performance for real data (with

low SNR) and simulated data. The complexity of MMSE equalizer is less than those of other

equalizers. Another advantage of MMSE equalizer is that practical and simplified

implementations of MMSE equalizer appear to not degrade its performance too much.

For detection methods, fixed threshold, adaptive threshold, log likelihood ratio (LLR) and

iterative detectors were investigated. Fixed threshold detector performs worse than other

detectors, but it is a simple detector to implement. For low SNR output page, LLR and

iterative detector performances are close but for higher SNR data, the iterative detector

works better. Iterative detector makes decision with considering neighboring bits and 2D

ISI. Another advantage of iterative detector algorithm is that it is parallel and can be
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applied to all the output data simultaneously. The disadvantage of iterative detector is that

the channel model needs to be known.

6.2 Future work

In this project we developed channel model using physical impairments of the channel. The

result of this model shows around 30% NRMSE. The reason could be not including all the

channel impairments. We also didn’t model the storage media. For future we can add more

physical channel impairment like misalignment and magnification error, Also we can find a

model for storage media too.

In real holographic channel the SNR is very low. As a result the noise enhancement of an

equalizer degrades the performance of it. As we can see from the result of real data, the BER

improvement is just about 20% and after the equalization the amount of error is still high. Partial

response equalizer may be helpful by defining a suitable target and using advanced detection

methods.

Because the SNR is very low in HDS, using an equalizer does not improve BER too

much. Therefore, to retrieve data reliably, we need to use a powerful coding technique.

Different encoding and decoding methods that take into account the 2D nature of channel

were not yet investigated and should be considered in the future.
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